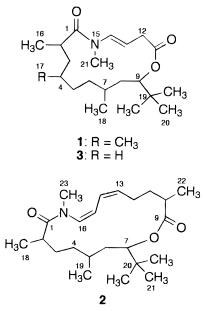
Madangolide and Laingolide A, Two Novel Macrolides from *Lyngbya bouillonii* (Cyanobacteria)

D. Klein,[†] J. C. Braekman,^{*,†} D. Daloze,^{*,†} L. Hoffmann,[‡] G. Castillo,[‡] and V. Demoulin[‡]

Laboratory of Bio-organic Chemistry, Faculty of Sciences CP 160/07, University of Brussels, 50, Av. F. D. Roosevelt, B-1050 Brussels, Belgium, and Laboratory of Algology, Mycology and Experimental Systematics, Department of Botany, University of Liege, Sart Tilman B22, B-4000 Liege, Belgium


Received January 25, 1999

Two new macrolide derivatives, madangolide (2) and laingolide A (3), have been isolated from the cyanobacterium *Lyngbya bouillonii*, collected in Papua New Guinea. Their structures (without stereochemistry) have been established by detailed high-field 1D and 2D NMR studies and, in the case of 3, by comparison with the spectroscopic data of laingolide (1), previously isolated from the same organism.

Cyanophyceae (Cyanobacteria) constitute a rich source of novel bioactive metabolites with unprecedented structures.^{1,2} In the course of a screening program to evaluate blue-green algae as a source of interesting bioactive metabolites, we reported the isolation of two novel macrolides, laingolide (1)³ and lyngbyaloside,⁴ as well as a modified linear tetrapeptide, lyngbyapeptin A,⁵ from the recently described *Lyngbya bouillonii* Hoffmann and Demoulin⁶ (Oscillatoriaceae). This organism proves to be an exceptionally rich source of diverse secondary metabolites, and we now report the isolation and structure determination of two further macrolides, madangolide (2) and laingolide A (3), from another collection made in the vicinity of Madang (north coast of Papua New Guinea) (Figure 1).

Madangolide (2) (1.7 mg) and laingolide A (3) (1.5 mg) were isolated from the dried alga (21.7 g) by the procedure outlined in the Experimental Section. The HREIMS of madangolide (2) showed a molecular ion at m/z 377.2926, corresponding to the molecular formula $C_{23}H_{39}NO_3$ (calcd as 377.2930, $\Delta = 0.4$ mDa). The IR spectrum showed the presence of ester (ν_{CO} 1729 cm⁻¹) and amide (ν_{CO} 1662 cm⁻¹) functionalities, whereas the UV spectrum indicated the presence of a conjugated system [λ_{max} (MeOH): 200 (ϵ 16 600) and 244 nm (ϵ 24 400)]. The structure of **2** could be deduced by 1D and 2D NMR studies at 600 MHz (1H, ¹³C, ¹H/¹H COSY, HMQC, HMBC). The ¹³C NMR spectrum of 2 displayed 23 carbon atom signals (Table 1), which included two carbonyls, four olefinic methines, one guaternary carbon (δ 36.0), four sp³ methines, one bearing an oxygen atom (δ 78.0), five methylenes, and seven methyls, three of which belonged to a *tert*-butyl group (δ 26.7) and one to a *N*-methyl function (δ 31.0). Two carbonyl groups and two carbon-carbon double bonds accounted for the presence of four degrees of unsaturation, and thus, on the basis of its molecular formula, 2 must be monocyclic. The connectivity from C-2 to C-7 and from C-10 to C-16 was afforded by the ¹H/¹H COSY spectrum, which allowed us also to attach the methyl groups at δ 1.05, 0.91, and 1.16 to C-2, C-5, and C-10, respectively. The location of the tertbutyl group at C-7 followed from HMBC correlations between H-7, C-20 and C-21, whereas HMBC correlations between the carbonyl carbon at δ 175.6, H-7 and H₃-22 fixed the position of the lactone group (Table 1). The

[†] University of Brussels.

Figure 1. Structures of laingolide (1), madangolide (2), and laingolide A (3).

presence of a lactam, which is part of a dienamide system, was deduced from diagnostic HMBC correlations between the *N*-CH₃ group, the C-1 carbonyl group at δ 177.4 and the C-16 vinyl carbon at δ 130.2. These correlations allowed us to attach the nitrogen atom to C-16, and to close the ring between the N-CH₃ moiety and the carbonyl group at δ 177.4. The configuration of the Δ^{15} double bond was easily assigned as Z on the basis of the coupling constant $(J_{15,16})$ = 6.6 Hz). This assignment was more difficult for the Δ^{13} double bond. The H-14 and H-15 signals were indeed nearly superimposed, whereas the strong couplings between H-13 and both H-12 precluded the direct determination of $J_{13,14}$. This problem was solved by selective irradiation of the two H-12 signals at δ 2.23 and 2.32, upon which the H-13 multiplet collapsed to a doublet, $J_{13,14} = 9.0$ Hz. This result allowed us to assign the *Z* configuration to the Δ^{13} double bond as well. Owing to the conformational mobility of the seventeen-membered ring of 2, and the small amount of material available, the relative configuration of the four stereogenic carbon atoms could not be assigned.

Laingolide A⁷ (**3**) possessed the molecular formula $C_{20}H_{35}$ -NO₃, as shown by HREIMS [M⁺ at *m/z* 337.2614; calcd 337.2617 ($\Delta = 0.3$ mDa)] and thus differed from laingolide

10.1021/np9900324 CCC: \$18.00 © 1999 American Chemical Society and American Society of Pharmacognosy Published on Web 05/04/1999

^{*} To whom correspondence should be addressed. Tel.: +32 2 650 3537 and 650 2961. Fax: +32 2 650 2798. E-mail: ddaloze@ulb.ac.be and braekman@ulb.ac.be.

[‡] University of Liège.

Table 1. NMR Data of Madangolide (2) (CDCl₃, 600 and 150.87 MHz, δ , *J* in Hz)

position	$^{1}\mathrm{H}$	¹³ C	HMBC ^a	
1		177.4		
2	2.67, sex, 7.0	37.1	C1, C-3, C-18	
3a	1.64, m	32.2	C-1, C-2	
3b	1.23, m		C-1, C-18	
4a	1.23, m	33.8		
4b	1.00, m		C-3	
5	1.50, m	31.0	C-19	
6a	1.50, m	36.8		
6b	1.48, m		C-4, C-5, C-7, C-19	
7	4.81, dd, 7.8, 3.0	78.0	C-5, C-9, C-20, C-21	
9		175.6		
10	2.52, dquin, 7.0, 2.5	39.5	C-22	
11a	1.88, m	32.6	C-9, C-22	
11b	1.62		C-9, C-10, C-12, C-1	
12a	2.32, m	25.9	C-11, C-13, C-14	
12b	2.23, m		C-10, C-11, C-13	
13	5.64, m	135.9		
14	5.97, m	123.6	C-12, C-13, C-16 ^b	
15	5.99, m	121.3	C-12, C-13, C-16 ^b	
16	6.14, bd, 6.6	130.2	C-14, C-15	
18	1.05, 3H, d, 6.6	17.1	C-1, C-2, C-3	
19	0.91, 3H, d, 6.0	20.3	C-4, C-5, C-6	
20		36.0		
21	0.86, 9H, s	26.7	C-6, C-7, C-20	
22	1.16, 3H, d, 7.0	16.9	C-9, C-10, C-11	
23	3.01, 3H, s	35.4	C-1, C-16	

^{*a*} Optimized for J = 5 and 10 Hz. ^{*b*} Correlations of H-14 and H-15 could not be distinguished.

Table 2. NMR Data of Laingolide A (**3**) and 13 C NMR of Laingolide (**1**)³ (CDCl₃, 600 and 150.87 MHz, δ , *J* in Hz)

	3	1		
position	¹ H	¹³ C	HMBC ^a	¹³ C
1		176.4		176.3
2	2.99, m	36.2		34.5
3a	1.56, m	36.6	C-1, C-2, C-4, C-16	40.8
3b	1.40, m		C-1, C-2, C-4	
4a	1.24, m	26.2	C-3	31.3
4b	1.04, m		C-16	
5a	1.26, m	26.8	C-6	33.7
5b	1.12, m			
6a	1.32, m	36.8	C-5	33.3
6b	1.23, m		C-7	
7	1.17, m	27.7		28.5
8a	1.58, m	35.5		35.4
8b	0.99, m		C-17	
9	4.81, dd, 11.0, <1.0	79.7	C-8, C-11, C-19	79.1
11		172.5		171.7
12a	3.06, ddd, 12.0, 6.0, 1.5	37.6	C-11	36.3
12b	2.94, dd, 12.0, 10.8		C-11, C-13, C-14	
13	5.18, ddd, 14.0, 10.8, 6.0			104.8
14	7.01, dd, 14.0, 1.5		C-1, C-11, C-12, C-20	131.9
16	1.16, 3H, d, 6.6	18.5	C-1, C-2	18.5
17	0.83, 3H, d, 7.0		C-6, C-7, C-8	20.6^{b}
18		35.1		20.6
19	0.89, 9H, s	26.7	C-9, C-18, C-19	34.3
20	3.10, 3H, s	31.2	C-1, C-13, C-14	25.9
21				30.6

^{*a*} Optimized for J = 5 Hz. ^{*b*} From this position, the numbering of **1** and **3** differs by one C atom.

(1) only by having one carbon and two hydrogen atoms less. The assignment of all hydrogen and carbon signals of the molecule was performed by 1D and 2D NMR experiments (¹H, ¹H/¹H COSY, HMQC, HMBC). We should mention that the sample underwent a partial degradation during the NMR measurements, so that the interpretation of the data was complicated by the presence of signals due to impurities. However, the comparison of the ¹³C NMR data with those of laingolide (1)³ (Table 2) clearly showed that **3** possessed the same fifteen-membered macrocyclic ring as **1**, as well as the lactone, enamide, and *tert*-butyl function-

alities, but lacked one of the methyl groups of 1. The close similarity between the carbon atom signals of C-7 to C-14 in both compounds (Table 2) strongly suggested that the missing carbon atom was the one fixed at C-2 or C-4 of 1. Arguments in favor of the latter hypothesis came from the assignment of the H₂C-2 to H₂C-6 signals. This was initially not straightforward, owing to the superimposition of several hydrogen signals (e.g. H-4a, H-5a, H-6b). All these data pointed to structure **3** for laingolide A. This hypothesis was strengthened by calculating the chemical shifts of C-2 to C-7 of 3, starting from the values measured for the corresponding carbon atoms of 1, and using the substituent parameters computed for the introduction of a CH₃ group as a branch in an alkane (α , +6; β , +8; γ , -2).⁸ This approach gave the following results (calculated values in brackets): C-2, 36.2 (36.4); C-3, 36.6 (32.8); C-4, 26.2 (25.2); C-5, 26.8 (25.5); C-6, 36.8 (35.1); C-7, 27.7 (28.3). Of course, the substituent parameters used do not take into account the proximity effects that could arise in a system such as **1** (e.g. between CH₃-16 and CH₃-17). Nevertheless, the comparison between calculated and measured δ showed that they are in agreement, except for C-3, which is not unexpected as it is the sole carbon atom located between two CH-CH₃ groups. As for 2, the relative configuration of 3 could not be determined.

In view of the new and interesting structure of these compounds, we plan to recollect a larger sample of *Lyngbya bouillonii*, so as to be able to determine their relative configurations and to evaluate their biological properties.

Experimental Section

General Experimental Procedures. UV spectra were taken on a Philips PU 8700 UV-vis spectrophotometer in methanol. IR spectra were recorded on a Bruker IFS 25 instrument as a film on a NaCl disk. EIMS and HREIMS measurements were performed on a Fisons VG Autospec. The NMR spectra were recorded in CDCl₃ at 600 MHz (Varian Unity 600 instrument). The chemical shifts (δ) are reported in ppm and the coupling constants in Hz. Flash liquid chromatography was performed over Macherey-Nagel Si gel (0.04-0.063 mm), and thin-layer chromatography analyses (TLC) on Polygram SilG/UV₂₅₄ precoated plates (0.25 mm). HPLC separations were performed on a Waters LCM1 plus apparatus coupled to a Waters 996 photodiode array detector, using a Merck Lichrocart 250-10 Lichrospher (10 μ m) column (flow: 5 mL/min) or a 250-10 Chrompack Chromspher 5 C-18 column (flow: 5 mL/min).

Biological Material. The algal material was collected by SCUBA diving at a depth of 1-10 m on the coral reefs near Madang (July 1998) on the northern coast of Papua New Guinea. The material was air-dried or dried with moderate heat and stored in plastic bags with Si gel until the return to the laboratory. A voucher specimen is maintained in the collections of the Laboratory of Algology, Mycology and Experimental Systematics at the University of Liège (LG).

Isolation of Madangolide (2) and Laingolide A (3). The dried material (21.7 g) was sequentially extracted three times with CH_2Cl_2 , EtOH, and five times with MeOH, affording 0.131, 3.8, and 5.2 g, respectively, after evaporation of the solvent. The two alcoholic extracts were pooled and partitioned with hexane-AcOEt-2-propanol-H₂O (3:4:2:6). The material present in the organic phase (0.536 g) was added to the 0.131 g of the CH_2Cl_2 extract. This fraction was chromatographed over Sephadex LH-20 with EtOH, to afford 10 fractions. Fraction D (0.160 g) was submitted to a Si gel column chromatography (CH_2Cl_2 -MeOH, from 100:0 to 0:100), and the fraction eluting with CH_2Cl_2 -MeOH 95:5 was submitted to $RP-C_{18}$ chromatography with CH_3CN as eluent. This afforded 0.064 g of a mixture that was treated with ethereal CH_2N_2 and chromatographed on a Si gel column, using

successively hexane-AcOEt 9:1 and CH₂Cl₂-MeOH 9:1 as eluent. The CH₂Cl₂-MeOH fractions were pooled, affording 0.028 g of material that was submitted to final reversed-phase separation on a Chromspher 5 C₁₈ column (CH₃CN-H₂O, from 50:50 to 100:0), to afford madangolide (2) (1.7 mg) and laingolide A (3) (1.5 mg), as amorphous solids.

2: UV and IR, see text; NMR, see Table 1; HREIMS m/z377.2926 (calcd for C23H39NO3, 377.2930); 304.2640 (calcd for C₂₀H₃₄NO, 304.2640); 182.1179 (calcd for C₁₀H₁₆NO₂, 182.1181); EIMS (70 eV) m/z 377 (67, M⁺); 320 (14), 313 (18), 304 (45), 250 (10), 182 (100), 166 (88), 110 (15), 109 (15), 96 (80), 94 (35), 83 (37).

3: NMR, see Table 2; HREIMS m/z 337.2614 (calcd for C₂₀H₃₅NO₃, 337.2617); 252.2329 (calcd for C₁₆H₃₀NO, 252.2327); 115.0634 (calcd for C5H9NO2, 115.0633); EIMS (70 eV) m/z 337 (27, M⁺); 252 (8); 140 (6); 127 (7); 115 (41); 97 (23); 83 (14); 75 (12); 70 (100); 55 (31).

Acknowledgment. We thank the Fonds de la Recherche Fondamentale Collective (FRFC) for financial support (Contracts No. 2.4570.93-96, 2.4502.95, 2.9001.90, and 2.4521.96). We also thank Mr. C. Maerschalk and Dr. M. Luhmer for the

References and Notes

- (1) Moore, R. E.; Ohtani, I.; Moore, B. S.; Dekoning, C. B.; Yoshida, W. Y.; Runnegar, M. T. C.; Carmichael, W. W. *Gazz. Chim. Ital.* **1993**, *123*, 329–336.
- (2) Patterson, G. M. L.; Larsen, L. K.; Moore, R. E. J. Appl. Phycol. 1994, 6, 151-157.
- (3) Klein, D.; Braekman, J. C.; Daloze, D.; Hoffmann, L.; Demoulin, V. (4) Klein, D.; Brackman, J. C.; Daloze, D.; Hoffmann, L.; Demoulin, V.
 (4) Klein, D.; Brackman, J. C.; Daloze, D.; Hoffmann, L.; Demoulin, V.
- J. Nat. Prod. 1997, 60, 1057-1059.
- (5) Klein, D.; Braekman J. C.; Daloze, D.; Castillo, G.; Hoffmann, L.; Demoulin, V. *Tetrahedron Lett.* **1999**, *40*, 695.
 (6) Hoffmann, L.; Demoulin, V.*Belg. J. Bot.* **1991**, *124*, 82–88.
 (7) We do not use the name "4-demethyllaingolide" for compound **3**, as
- we have no proof as yet that laingolide (1) and 3 have the same relative configuration.
- Wehrli, F. W.; Wirthlin, T. *Interpretation of Carbon-13 NMR Spectra*; Heyden: London, 1978; pp 36–37. (8)

NP9900324